Key Publications
Space flight causes a number of alterations in physiological systems, changes in the immunological status of subjects, and altered interactions of the host to environmental stimuli. We studied the effect of space flight on the lymphatic system of the gastrointestinal tract which is responsible for lipid transport and immune surveillance which includes the host interaction with the gut microbiome.
We found that there were signs of tissue damage present in the space flown animals that was lacking in ground controls (epithelial damage, crypt morphological changes, etc.). Additionally, morphology of the lymphatic vessels in the tissue suggested a collapsed state at time of harvest and there was a profound change in the retention of lipid in the villi of the ileum. Contrary to our assumptions there was a reduction in tissue fluid volume likely associated with other fluid shifts described. The reduction of tissue fluid volume in the colon and ileum is a likely contributing factor to the state of the lymphatic vessels and lipid transport issues observed. There were also associated changes in the number of MHC-II+ immune cells in the colon tissue, which along with reduced lymphatic competence would favor immune dysfunction in the tissue.
These findings help expand our understanding of the effects of space flight on various organ systems. It also points out potential issues that have not been closely examined and have to potential for the need of countermeasure development.
The long-term adaptations to microgravity and other spaceflight challenges within the confines of a spacecraft, and readaptations to weight-bearing upon reaching a destination, are unclear. While post-flight gait change in astronauts have been well documented and reflect multi-system deficits, no data from rodents have been collected. Thus, the purpose of this study was to evaluate gait changes in response to spaceflight. A prospective collection of gait data was collected on 3 groups of mice: those who spent ~35 days in orbit (FLIGHT) aboard the International Space Station (ISS); a ground-based control with the same habitat conditions as ISS (Ground Control; GC); and a vivarium control with typical rodent housing conditions (VIV). Pre-flight and post-flight gait measurements were conducted utilizing an optimized and portable gait analysis system (DigiGait, Mouse Specifics, Inc). The total data acquisition time for gait patterns of FLIGHT and control mice was 1.5–5 min/mouse, allowing all 20 mice per group to be assessed in less than an hour. Patterns of longitudinal gait changes were observed in the hind limbs and the forelimbs of the FLIGHT mice after ~35 days in orbit; few differences were observed in gait characteristics within the GC and VIV controls from the initial to the final gait assessment, and between groups. For FLIGHT mice, 12 out of 18 of the evaluated gait characteristics in the hind limbs were significantly changed, including: stride width variability; stride length and variance; stride, swing, and stance duration; paw angle and area at peak stance; and step angle, among others. Gait characteristics that decreased included stride frequency, and others. Moreover, numerous forelimb gait characteristics in the FLIGHT mice were changed at post-flight measures relative to pre-flight. This rapid DigiGait gait measurement tool and customized spaceflight protocol is useful for providing preliminary insight into how spaceflight could affect multiple systems in rodents in which deficits are reflected by altered gait characteristics.
The health risks associated with spaceflight-induced ocular structural and functional damage has become a recent concern for NASA. The goal of the present study was to characterize the effects of spaceflight and reentry to 1g on the structure and integrity of the retina and blood-retinal barrier (BRB) in the eye. To investigate possible mechanisms, changes in protein expression profles were examined in mouse ocular tissue after spacefight. Ten week old male C57BL/6 mice were launched to the International Space Station (ISS) on Space-X 12 at the Kennedy Space Center (KSC) on August, 2017. After a 35-day mission, mice were returned to Earth alive. Within 38+/−4 hours of splashdown, mice were euthanized and ocular tissues were collected for analysis. Ground control (GC) and vivarium control mice were maintained on Earth in fight hardware or normal vivarium cages respectively. Repeated intraocular pressure (IOP) measurements were performed before the fight launch and remeasured before the mice were euthanized after splashdown. IOP was signifcantly lower in post-fight measurements compared to that of pre-fight (14.4–19.3mmHg vs 16.3–20.3mmHg) (p<0.05) for the left eye. Flight group had signifcant apoptosis in the retina and retinal vascular endothelial cells compared to control groups (p<0.05). Immunohistochemical analysis of the retina revealed that an increased expression of aquaporin-4 (AQP-4) in the fight mice compared to controls gave strong indication of disturbance of BRB integrity. There were also a significant increase in the expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) and a decrease in the expression of the BRB-related tight junction protein, Zonula occludens-1 (ZO-1). Proteomic analysis showed that many key proteins and pathways responsible for cell death, cell cycle, immune response, mitochondrial function and metabolic stress were significantly altered in the fight mice compared to ground control animals. These data indicate a complex cellular response that may alter retina structure and BRB integrity following long-term spaceflight.
Diminished constriction of arteries and veins following exposure to microgravity or bed rest is associated with a reduced ability to augment peripheral vascular resistance (PVR) and stroke volume during orthostasis. We tested the hypothesis that small mesenteric arteries and veins, which are not exposed to large pressure shifts during simulated microgravity via head-down tail suspension (HDT), will exhibit decrements in adrenergic constriction after HDT in rats. Small mesenteric arteries and veins from control (Con; n= 41) and HDT (n= 35) male Sprague-Dawley rats were studied in vitro. Vasoactive responsiveness to norepinephrine (NE) in arteries (10−9 to 10−4 M) and veins (pressure-diameter responses from 2–12 cm H2O after incubation in 10−6 or 10−4 M NE) were evaluated. Plasma concentrations of atrial (ANP) and brain (NT-proBNP) natriuretic peptides were also measured. In mesenteric arteries, sensitivity and maximal responsiveness to NE were reduced with HDT. In mesenteric veins there was a diminished venoconstriction to NE at any given pressure in HDT. Plasma concentrations of both ANP and NT-proBNP were increased with HDT, and maximal arterial and venous constrictor responses to NE after incubation with 10−7 M ANP or NT-proBNP were diminished. These data demonstrate that, in a vascular bed not subjected to large hydrodynamic differences with HDT, both small arteries and veins have a reduced responsiveness to adrenergic stimulation. Elevated levels of circulating ANP or NT-proBNP could adversely affect the ability of these vascular beds to constrict in vivo, and conceivably could alter the intrinsic constrictor properties of these vessels with long-term exposure.
Purpose: Although the microvascular system is a significant target for radiation-induced effects, the lymphatic response to radiation has not been extensively investigated. This is one of the first investigations characterizing the lymphatic endothelial response to ionizing radiation.
Materials and Methods: Rat mesenteric lymphatic endothelial cells (RMLECs) were exposed to X-ray doses of 0, 0.5, 1, 1.5, and 2 Gy. RMLEC cellular response was assessed 24 and 72-h post-irradiation via measures of cellular morphometry and junctional adhesion markers. RMLEC functional response was characterized via permeability experiments.
Results: Cell morphometry showed radiation sensitivity at all doses. Notably there was a loss of cell-to-cell adhesion with irradiated cells increasing in size and cellular roundness. This was coupled with decreased β-catenin and VE-cadherin intensity and altered F-actin anisotropy, leading to a loss of intercellular contact. RMLEC monolayers demonstrated increased permeability at all doses 24h post-irradiation and at 2-Gy 72h post-irradiation.
Conclusions: In summary, lymphatics show radiation sensitivity in the context of these cell culture experiments. Our results may have functional implications of lymphatics in tissue, with endothelial barrier dysfunction due to loss of cell-cell adhesion leading to leaky vessels and lymphedema. These preliminary experiments will build the framework for future investigations towards lymphatic radiation exposure response.
During spaceflight the normal head-to-foot hydrostatic pressure gradients are eliminated and body fluids shift toward the head, resulting in a diminished fluid volume in the legs and an increased fluid volume in the head, neck, and upper extremities. Lymphatic function is important in the maintenance of normal tissue fluid volume, but it is not clear how microgravity influences lymphatic pumping. We performed a detailed evaluation of the influence of simulated microgravity on lymphatic diameter, wall thickness, elastance, tone, and other measures of phasic contractility in isolated lymphatics. Head-down tail suspension (HDT) rats were used to simulate the effects of microgravity. Animals were exposed to HDT for 2 wk, after which data were collected and compared with the control non-HDT group. Lymphatics from four regional lymphatic beds (thoracic duct, cervical, mesenteric, and femoral lymphatics) were isolated, cannulated, and pressurized. Input and output pressures were adjusted to apply a range of transmural pressures and flows to the lymphatics. Simulated microgravity caused a potent inhibition of pressure/stretch-stimulated pumping in all four groups of lymphatics. The greatest inhibition was found in cervical lymphatics. These findings presumably are correlated to the cephalic fluid shifts that occur in HDT rats as well as those observed during spaceflight. Flow-dependent pump inhibition was increased after HDT, especially in the thoracic duct. Mesenteric lymphatics were less strongly influenced by HDT, which may support the idea that lymph hydrodynamic conditions in the mesenteric lymphatic during HDT are not dramatically altered.
Objective: To evaluate lymphatic contractile activity in different regions of the lymphatic system in a single animal model (the rat thoracic duct, mesenteric, cervical, and femoral lymphatics) in response to changes in lymph pressure and flow.
Methods: The systolic and diastolic diameters of isolated, cannulated, and pressurized lymphatic vessels were measured. Contraction frequency, ejection fraction, and fractional pump flow were determined. The influences of incrementally increased transmural pressure (from 1 to 9 cm H2O) and imposed flow (from 1 to 5 cm H2O transaxial pressure gradient) were investigated.
Results: The authors determined regional differences in lymphatic contractility in response to pressure and imposed flow. They found the highest pumping (at the optimal pressure levels) in mesenteric lymphatics and lowest pumping in thoracic duct. All lymphatics had their optimal pumping conditions at low levels of transmural pressure. Different degrees of the flow-induced inhibition of the pump were observed in the different types of lymphatics. During high flow, the active lymph pumps in thoracic duct and cervical lymphatics were almost completely abolished, whereas mesenteric and femoral lymphatics still exhibited significant active pumping.
Conclusions: The active lymph pumps in different regions of the rat body express variable relative strengths and sensitivities that are predetermined by different hydrodynamic factors and regional outflow resistances in their respective locations.
Reduced knee weight-bearing from prescription or sedentary lifestyles are associated with cartilage degradation; effects on the meniscus are unclear. Rodents exposed to spaceflight or hind limb unloading (HLU) represent unique opportunities to evaluate this question. This study evaluated arthritic changes in the medial knee compartment that bears the highest loads across the knee after actual and simulated spaceflight, and recovery with subsequent full weight-bearing. Cartilage and meniscal degradation in mice were measured via microCT, histology, and proteomics and/or biochemically after: (1)~ 35 days on the International Space Station (ISS); (2) 13-days aboard the Space Shuttle Atlantis; or (3) 30 days of HLU, followed by a 49-day weight-bearing readaptation with/ without exercise. Cartilage degradation post-ISS and HLU occurred at similar spatial locations, the tibial-femoral cartilage-cartilage contact point, with meniscal volume decline. Cartilage and meniscal glycosaminoglycan content were decreased in unloaded mice, with elevated catabolic enzymes (e.g., matrix metalloproteinases), and elevated oxidative stress and catabolic molecular pathway responses in menisci. After the 13-day Shuttle fight, meniscal degradation was observed. During readaptation, recovery of cartilage volume and thickness occurred with exercise. Reduced weight-bearing from either spaceflight or HLU induced an arthritic phenotype in cartilage and menisci, and exercise promoted recovery
Extended spaceflight has been shown to adversely affect astronaut visual acuity. The purpose of this study was to determine whether spaceflight alters gene expression profiles and induces oxidative damage in the retina. Ten week old adult C57BL/6 male mice were flown aboard the ISS for 35 days and returned to Earth alive. Ground control mice were maintained on Earth under identical environmental conditions. Within 38 (+/−4) hours after splashdown, mice ocular tissues were collected for analysis. RNA sequencing detected 600 differentially expressed genes (DEGs) in murine spaceflight retinas, which were enriched for genes related to visual perception, the phototransduction pathway, and numerous retina and photoreceptor phenotype categories. Twelve DEGs were associated with retinitis pigmentosa, characterized by dystrophy of the photoreceptor layer rods and cones. Differentially expressed transcription factors indicated changes in chromatin structure, offering clues to the observed phenotypic changes. Immunofluorescence assays showed degradation of cone photoreceptors and increased retinal oxidative stress. Total retinal, retinal pigment epithelium, and choroid layer thickness were significantly lower after spaceflight. These results indicate that retinal performance may decrease over extended periods of spaceflight and cause visual impairment.